演讲嘉宾-Gianaurelio Cuniberti

Gianaurelio Cuniberti
德国国家工程院院士,美国物理学会会士,英国皇家化学学会会士,德国德累斯顿工业大学教授及德累斯顿马克斯·伯格曼生物材料中心主任
  Gianaurelio Cuniberti是欧洲科学院、欧洲人文和自然科学院及德国国家科学与工程院院士,美国物理学会会士,英国皇家化学学会会士,德国德累斯顿工业大学教授及德累斯顿马克斯·伯格曼生物材料中心主任。2024 年,他被意大利共和国总统授予 “意大利之星骑士勋章”,以表彰其在科学及国际合作领域的杰出贡献。Gianaurelio Cuniberti教授自 2007 年起担任德国德累斯顿工业大学(TU Dresden)及德国德累斯顿马克斯・伯格曼生物材料中心担任材料科学与纳米技术讲席教授。2003 年至 2007 年,他担任德国雷根斯堡大学大众汽车基金会研究小组负责人。他担任多家高影响力期刊的审稿人,同时为多个科研资助机构提供评审服务,包括欧盟、德国科学基金会(DFG)、美国国家科学基金会(NSF)、德以科学基金会(GIF)及亚历山大・冯・洪堡基金会等。库尼贝蒂教授曾获多项人才奖学金及荣誉奖项,包括马克斯・普朗克学会施勒斯曼奖(2001 年)、德国汽车基金会研究小组个人资助(2003 年)。他助力孵化了多家衍生企业,是意大利热那亚理工学院(IIT)技术科学委员会成员,积极参与战略研究方向的制定。
演讲题目:Machine Learning for Molecular Sensing
主题会场
开始时间
结束时间
内容摘要

Olfaction, an ancient sensory system, provides intricate information about the environment. In emulation of this biological process, neuromorphic devices in conjunction with machine learning algorithms, endeavor to replicate and digitize the olfactory capabilities. This presentation focuses on the gas discrimination and identification capabilities of neuromorphic nanosensors. These nanosensors, constructed with functionalized nano materials, were integrated into multi-channel gas sensor devices, and their sensing signals were recorded upon exposure to diverse gases. To unravel the temporal characteristics embedded in the sensing signals, we employ machine learning algorithms to extract meaningful patterns and discern specific gases. The integration of machine learning significantly enhances the electronic olfaction system's gas identification performance across a wide spectrum of gases. This innovative platform not only downsizes electronic noses but also digitizes olfactory information, enabling the precise detection and identification of various gases and volatile organic compounds (VOCs). By leveraging machine learning, our electronic olfaction system demonstrates exceptional capabilities applicable to diverse fields such as pathogen detection, environmental monitoring, and disease diagnosis. The fusion of neuromorphic nanosensors and machine learning algorithms creates a powerful synergy, paving the way for advanced molecular sensing technologies with broad-ranging applications.

关于主办方

联系我们
400-110-3655   

E-mail: meeting@c-gia.cn   meeting01@c-gia.cn

参展电话:13646399362(苏老师)

主讲申请:19991951101(王老师)

官方微信订阅号
Copyright © 中国国际石墨烯创新大会 版权所有     运营机构:北京现代华清材料科技发展有限责任公司
grapchina.org 京ICP备10026874号-12   grapchina.cn 京ICP备10026874号-23
京公网安备 11010802023402号
分享到:
凯发_Gianaurelio Cuniberti

凯发

演讲嘉宾-Gianaurelio Cuniberti

Gianaurelio Cuniberti
德国国家工程院院士,美国物理学会会士,英国皇家化学学会会士,德国德累斯顿工业大学教授及德累斯顿马克斯·伯格曼生物材料中心主任
  Gianaurelio Cuniberti是欧洲科学院、欧洲人文和自然科学院及德国国家科学与工程院院士,美国物理学会会士,英国皇家化学学会会士,德国德累斯顿工业大学教授及德累斯顿马克斯·伯格曼生物材料中心主任。2024 年,他被意大利共和国总统授予 “意大利之星骑士勋章”,以表彰其在科学及国际合作领域的杰出贡献。Gianaurelio Cuniberti教授自 2007 年起担任德国德累斯顿工业大学(TU Dresden)及德国德累斯顿马克斯・伯格曼生物材料中心担任材料科学与纳米技术讲席教授。2003 年至 2007 年,他担任德国雷根斯堡大学大众汽车基金会研究小组负责人。他担任多家高影响力期刊的审稿人,同时为多个科研资助机构提供评审服务,包括欧盟、德国科学基金会(DFG)、美国国家科学基金会(NSF)、德以科学基金会(GIF)及亚历山大・冯・洪堡基金会等。库尼贝蒂教授曾获多项人才奖学金及荣誉奖项,包括马克斯・普朗克学会施勒斯曼奖(2001 年)、德国汽车基金会研究小组个人资助(2003 年)。他助力孵化了多家衍生企业,是意大利热那亚理工学院(IIT)技术科学委员会成员,积极参与战略研究方向的制定。
演讲题目:Machine Learning for Molecular Sensing
主题会场
开始时间
结束时间
内容摘要

Olfaction, an ancient sensory system, provides intricate information about the environment. In emulation of this biological process, neuromorphic devices in conjunction with machine learning algorithms, endeavor to replicate and digitize the olfactory capabilities. This presentation focuses on the gas discrimination and identification capabilities of neuromorphic nanosensors. These nanosensors, constructed with functionalized nano materials, were integrated into multi-channel gas sensor devices, and their sensing signals were recorded upon exposure to diverse gases. To unravel the temporal characteristics embedded in the sensing signals, we employ machine learning algorithms to extract meaningful patterns and discern specific gases. The integration of machine learning significantly enhances the electronic olfaction system's gas identification performance across a wide spectrum of gases. This innovative platform not only downsizes electronic noses but also digitizes olfactory information, enabling the precise detection and identification of various gases and volatile organic compounds (VOCs). By leveraging machine learning, our electronic olfaction system demonstrates exceptional capabilities applicable to diverse fields such as pathogen detection, environmental monitoring, and disease diagnosis. The fusion of neuromorphic nanosensors and machine learning algorithms creates a powerful synergy, paving the way for advanced molecular sensing technologies with broad-ranging applications.

关于主办方

联系我们
400-110-3655   

E-mail: meeting@c-gia.cn   meeting01@c-gia.cn

参展电话:13646399362(苏老师)

主讲申请:19991951101(王老师)

官方微信订阅号
Copyright © 中国国际石墨烯创新大会 版权所有     运营机构:北京现代华清材料科技发展有限责任公司
grapchina.org 京ICP备10026874号-12   grapchina.cn 京ICP备10026874号-23
京公网安备 11010802023402号
分享到: